DP CHEM SUMMER ASSIGNMENT

Incoming $11^{\text {th }}$ graders

Summer 2023

1. Due first day of class (in order to do lab): Watch the safety video (safety video by American Chemical society) and answer the Safety quiz (front and back)
https://www.youtube.com/watch?v=9077QEeM-68
2. Complete the Full Summer Review. Show all work.

You will have a pre-test on MYP content and content on this assignment (including knowing polyatomic ions)
3. Remember: This is a big packet to make sure that you are prepared for DP chem. Do not wait until the last minute to complete the packet. I will be available to answer any questions the first week of school but you should be able to do most of it on your own as all this content was covered in MYP.

Name	$\mathrm{Formula}^{2}$	Name	Formula
Acetate	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	Hypochlorite	ClO^{-}
Carbonate	$\mathrm{CO}_{3}{ }^{2-}$	Chlorite	$\mathrm{ClO}_{2}{ }^{-}$
Hydrogen carbonate (or bicarbonate)	$\mathrm{HCO}_{3}{ }^{-}$	Chlorate	$\mathrm{ClO}_{3}{ }^{-}$
Hydroxide	OH^{-}	Perchlorate	$\mathrm{ClO}_{4}{ }^{-}$
Nitrite	$\mathrm{NO}_{2}{ }^{-}$	Permanganate	MnO_{4}^{-}
Nitrate	$\mathrm{NO}_{3}{ }^{-}$	Sulfite	$\mathrm{SO}_{3}{ }^{2-}$
Chromate	$\mathrm{CrO}_{4}{ }^{2-}$	Hydrogen sulfite (or bisulfite)	$\mathrm{HSO}_{3}{ }^{-}$
Dichromate	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	Sulfate	$\mathrm{SO}_{4}{ }^{2-}$
Phosphate	$\mathrm{PO}_{4}{ }^{3-}$	Hydrogen sulfate (or bisulfate)	HSO_{4}^{-}
Hydrogen phosphate	$\mathrm{HPO}_{4}{ }^{2-}$	Cyanide	CN
Dihydrogen phosphate	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	Peroxide	$\mathrm{O}_{2}{ }^{2-}$
Ammonium	$\mathrm{NH}_{4}{ }^{+}$	Thiocyanate	SCN^{-}

NO_{3}^{-}	nitrate	$\mathrm{SO}_{4}{ }^{2-}$	sulfate
NO_{2}^{-}	nitrite	$\mathrm{SO}_{3}{ }^{2-}$ sulfite	$\mathrm{PO}_{4}{ }^{3-}$ phosphate
ClO^{-}hypochlorite	BrO^{-}hypobromite	$\mathrm{PO}_{3}{ }^{3-}$ phosphite	
ClO_{2}^{-}chlorite	BrO_{2}^{-}bromite	IO_{2}^{-}hypoiodite	
ClO_{3}^{-}chlorate	BrO_{3}^{-}bromate	IO_{3}^{-}iodate	
ClO_{4}^{-}perchlorate	BrO_{4}^{-}perbromate	IO_{4}^{-}periodate	

6. The periodic table

Significant Figures in Measurement and Calculations

A successful chemistry student habitually labels all numbers, because the unit is important. Also of great importance is the number itself. Any number used in a calculation should contain only figures that are considered reliable; otherwise, time and effort are wasted. Figures that are considered reliable are called significant figures. Chemical calculations involve numbers representing actual measurements. In a measurement, significant figures in a number consist of:

Figures (digits) definitely known + One estimated figure (digit)
In class you will hear this expressed as "all of the digits known for certain plus one that is a guess."

Recording Measurements

When one reads an instrument (ruler, thermometer, graduate, buret, barometer, balance), he expresses the reading as one which is reasonably reliable. For example, in the accompanying illustration, note the reading marked A. This reading is definitely beyond the
 7 cm mark and also beyond the 0.8 cm mark. We read the 7.8 with certainty. We further estimate that the reading is five-tenths the distance from the 7.8 mark to the 7.9 mark. So, we estimate the length as 0.05 cm more than 7.8 cm . All of these have meaning and are therefore significant. We express the reading as 7.85 cm , accurate to three significant figures. All of these figures, 7.85 , can be used in calculations. In reading B we see that 9.2 cm is definitely known. We can include one estimated digit in our reading, and we estimate the next digit to be zero. Our reading is reported as 9.20 cm . It is accurate to three significant figures.

Rules for Zeros

If a zero represents a measured quantity, it is a significant figure. If it merely locates the decimal point, it is not a significant figure.

Zero Within a Number. In reading the measurement 9.04 cm , the zero represents a measured quantity, just as 9 and 4, and is, therefore, a significant number. A zero between any of the other digits in a numberisasignificantfigure.

Zero at the Front of a Number. In reading the measurement 0.46 cm , the zero does not represent a measured quantity, but merely locates the decimal point. It is not a significant figure. Also, in the measurement 0.07 kg , the zeros are used merely to locate the decimal point and are, therefore, not significant. Zerosatthefirst(left)ofanumberarenotsignificantfigures.

Zero at the End of a Number. In reading the measurement 11.30 cm , the zero is an estimate and represents a measured quantity. It is therefore significant. Another way to look at this: The zero is not needed as a placeholder, and yet it was included by the person recording the measurement. It must have been recorded as a part of the measurement, making it significant. Zerostotheright ofthe decimal point, and attheendofthenumber, aresignificantfigures.

Zeros at the End of a Whole Number. Zeros at the end of a whole number may or may not be significant. If a distance is reported as 1600 feet, one assumes two sig figs. Reporting measurements in scientific notation removes all doubt, since all numbers written in scientific notation are considered significant. 1600 feet 1.6×10^{3} feet Two significant figures 1600 feet $\quad 1.60 \times 10^{3}$ feet Three significant figures
1600 feet $\quad 1.600 \times 10^{3}$ feet Four significant figures
Sample Problem \#1: Underline the significant figures in the following numbers.
(a) 0.0420 cm
answer $=0.0420 \mathrm{~cm}$
(e) 2403 ft .
answer $=\underline{2403} \mathrm{ft}$.
(b) 5.320 in .
answer $=5.320 \mathrm{in}$.
(f) 80.5300 m
answer $=\underline{80.5300} \mathrm{~m}$
(c) 10 lb .
answer $=10 \mathrm{lb}$.
(g) $200 . \mathrm{g}$
answer $=\underline{200} \mathrm{~g}$
(d) 0.020 ml
answer $=0.020 \mathrm{ml}$
(h) $2.4 \times 10^{3} \mathrm{~kg}$
answer $=\underline{2.4} \times 10^{3} \mathrm{~kg}$

Rounding Off Numbers

In reporting a numerical answer, one needs to know how to "round off" a number to include the correct number of significant figures. Even in a series of operations leading to the final answer, one must "round off" numbers. The rules are well accepted rules:

1. If the figure to be dropped is less than 5 , simply eliminate it.
2. If the figure to be dropped is greater than 5 , eliminate it and raise the preceding figure by 1 .
3. If the figure is 5 , followed by nonzero digits, raise the preceding figure by 1
4. If the figure is 5 , not followed by nonzero digit(s), and preceded by an odd digit, raise the preceding digit by one
5. If the figure is 5 , not followed by nonzero digit(s), and the preceding significant digit is even, the preceding digit remains unchanged

Sample Problem \#2: Round off the following to three significant figures.
(a) 3.478 m
answer $=3.48 \mathrm{~m}$
(c) 5.333 g
(b) 4.8055 cm
answer $=4.81 \mathrm{~cm}$
(d) 7.999 in .
answer $=5.33 \mathrm{~g}$
answer $=8.00 \mathrm{in}$.

Multiplication

In multiplying two numbers, when you wish to determine the number of significant figures you should have in your answer (the product), you should inspect the numbers multiplied and find which has the least number of significant figures. This is the number of significant figures you should have in your answer (the product). Thus the answer to 0.024×1244 would be rounded off to contain two significant figures since the factor with the lesser number of significant figures (0.024) has only two such figures.

Sample Problem \#3: Find the area of a rectangle 2.1 cm by 3.24 cm .
Solution: Area $=2.1 \mathrm{~cm} \times 3.24 \mathrm{~cm}=6.804 \mathrm{~cm}^{2}$
We note that 2.1 contains two significant figures, while 3.24 contains three significant figures. Our product should contain no more than two significant figures. Therefore, our answer would be recorded as $6.8 \mathrm{~cm}^{2}$

Sample Problem \#4: Find the volume of a rectangular solid $10.2 \mathrm{~cm} \times 8.24 \mathrm{~cm} \times 1.8 \mathrm{~cm}$
Solution: Volume $=10.2 \mathrm{~cm} \times 8.24 \mathrm{~cm} \times 1.8 \mathrm{~cm}=151.2864 \mathrm{~cm}^{3}$
We observe that the factor having the least number of significant figures is 1.8 cm . It contains two significant figures. Therefore, the answer is rounded off to $150 \mathrm{~cm}^{3}$.

Division
In dividing two numbers, the answer (quotient) should contain the same number of significant figures as are contained in the number (divisor or dividend) with the least number of significant figures. Thus the answer to $528{ }_{2}^{4} 0.14$ would be rounded off to contain two significant figures. The answer to $0.340 \div$ 3242 would be rounded off to contain three significant figures.

Sample Problem \#5: Calculate $20.45 \div 2.4$
Solution: $\quad 20.45 \div 2.4=8.52083$
We note that the 2.4 has fewer significant figures than the 20.45. It has only two significant figures. Therefore, our answer should have no more than two significant figures and should be reported as 8.5.

Addition and Subtraction
In adding (or subtracting), set down the numbers, being sure to keep like decimal places under each other, and add (or subtract). Next, note which column contains the first estimated figure. This column determines the last decimal place of the answer. After the answer is obtained, it should be rounded off in this column. In other words, round to the least number of decimal places in you data.

Sample Problem \#6: Add $42.56 \mathrm{~g}+39.460 \mathrm{~g}+4.1 \mathrm{~g}$
Solution:

	42.56 g
	39.460 g
Sum $=$	$\frac{4.1 \mathrm{~g}}{} \quad$
86.120 g	

Since the number 4.1 only extends to the first decimal place, the answer must be rounded to the first decimal place, yielding the answer 86.1 g .

Average Readings

The average of a number of successive readings will have the same number of decimal places that are in their sum.

Sample Problem \#7: A graduated cylinder was weighed three times and the recorded weighings were $12.523 \mathrm{~g}, 12.497 \mathrm{~g}, 12.515 \mathrm{~g}$. Calculate the average weight.

Solution:
12.523 g
12.497 g
12.515 g
37.535 g

In order to find the average, the sum is divided by 3 to give an answer of 12.51167. Since each number extends to three decimal places, the final answer is rounded to three decimal places, yielding a final answer of 12.512 g . Notice that the divisor of 3 does not affect the rounding of the final answer. This is because 3 is an exact number - known to an infinite number of decimal places.

SCIENTIFIC NOTATION, SIG. FIGS., DENSITY

1.Change to scientific notation.
a. $\quad 5.420 \times 10^{3}=$ \qquad d. $0.0067 \times 10^{-4}=$ \qquad
b. $\quad 0.020 \times 10^{3}=$ \qquad e. $-870 \times 10^{-4}=$ \qquad
c. $\quad 0.00492 \times 10^{12}=$ \qquad f. $-602 \times 10^{21}=$ \qquad
2. Determine the number of sig. figs. in the following:
a. $\quad 0.002030=$ \qquad s.f.
e. $670=$ \qquad s.f.
b. $\quad 670.0=$ \qquad s.f.
f. $1.35000=$ \qquad s.f.
c. $4 \times 10^{2}=$ \qquad s.f.
g. $4.00 \times 10^{2}=$ \qquad s.f.
d.
d. $\quad 4640=$ \qquad s.f.
h. $0.060 \times 10^{3}=\quad$ s.f
3. Perform the following calculations. Report your answer in correct number of sig.figs. and units.
a. $1.008 \mathrm{~m}+32.00 \mathrm{~m}+2.2 \mathrm{~m}=$ \qquad
b. $17.65 \mathrm{~g}-9.7 \mathrm{~g}=$ \qquad
c. $2.03 \mathrm{~cm}^{2} \div 1.2 \mathrm{~cm}=$ \qquad
d. $13.8612 \mathrm{~cm} \times 2.02 \mathrm{~cm}=$ \qquad
4. Givethe number ofsignificant figures in each of thefollowing:
_ 402 m \qquad 34.20 lbs
$\left[\begin{array}{l}0.03 \mathrm{sec} \\ \hline\end{array}\right.$
\qquad 3200 liters
$\quad 0.0300 \mathrm{ft}$.
$-\quad 1400.0 \mathrm{~m}$
_ 760 mm Hg
(5)a Multiply each of the following, observing sig fig rules
$17 \mathrm{~m} \times 324 \mathrm{~m}=$ \qquad $1.7 \mathrm{~mm} \times 4294 \mathrm{~mm}=$ \qquad
0.005 in $\times 8888$ in $=$ \qquad $0.050 \mathrm{~m} \mathrm{x} 102 \mathrm{~m}=$ \qquad
0.424 in $\mathrm{x} .090 \mathrm{in}=$ \qquad
\qquad

5b. Divide each of the following, observing sig figs rules
$23.4 \mathrm{~m} \div 0.50 \mathrm{sec}=$ \qquad 12 miles $\div 3.20$ hours $=$ \qquad
$0.960 \mathrm{~g} \div 1.51$ moles $=$ \qquad $1200 \mathrm{~m} \div 12.12 \mathrm{sec}=$ \qquad
6. Add each of the following, observing significant figures rules:

3.40 m	102.45 g	$102 . \mathrm{cm}$
+0.022 m	+2.44 g	+3.14 cm
$\underline{0.5 \mathrm{~m}}$	$\underline{1.9999 \mathrm{~g}}$	$\underline{5.9 \mathrm{~cm}}$

7. Subtract each of the following, observing significant figure rules:

42.306 m	14.33 g	234.1 cm
-1.22 m	$\underline{-3.468 \mathrm{~g}}$	$\underline{-62.04 \mathrm{~cm}}$

8. Work each of the following problems, observing sig fig rules
a) Three determinations were made of the percentage of oxygen in mercuric oxide. The results were $7.40 \%, 7.43 \%$, and 7.35%. What was the average percentage?
b) A rectangular solid measures $13.4 \mathrm{~cm} \times 11.0 \mathrm{~cm} \times 2.2 \mathrm{~cm}$. Calculate the volume of the solid.
c) If the density of mercury is $13.6 \mathrm{~g} / \mathrm{ml}$, what is the mass in grams of 3426 ml of the liquid?
d) A copper cylinder, 12.0 cm in radius, is 44.0 cm long. If the density of copper is $8.90 \mathrm{~g} / \mathrm{cm}^{3}$, calculate the mass in grams of the cylinder. (assume $\mathrm{pi}=3.14)$
9. Write at least 7 facts describing/explaining the Chemistry behind the picture on the right.

10. A 12.00 g unknown substance is placed in a container with 50.0 mL water. The water level rose up to 55.2 mL . Calculate the density of the substance.
11. Draw/illustrate how the following substances will appear inside a graduated cylinder just like in question \# 9 .

Liquid $1(0.69 \mathrm{~g} / \mathrm{mL})$
Liquid $2(1.26 \mathrm{~g} / \mathrm{mL})$
Liquid 3 (water)

Solid 1 ($0.8 \mathrm{~g} / \mathrm{mL}$)
Solid $2(2.04 \mathrm{~g} / \mathrm{mL})$
Liquid $4(3.05 \mathrm{~g} / \mathrm{mL})$

FORMULA WRITING, NAMING OF COMPOUNDS \& BALANCING CHEMICAL EQUATIONS
(Refer to the Periodic Table included in this packet as well as the list of polyatomic ions)
12. Name the following ionic compounds:
13. Write ionic formulas for the following compounds:
a. $\mathrm{LiCl}-$
a. sodium acetate -
b. $\mathrm{Mg}(\mathrm{OH})_{2}-$
b. tin(II) chloride -
c. $\mathrm{K}_{3} \mathrm{P}-$
c. calcium hydroxide -
d. $\mathrm{Fe}_{2} \mathrm{O}_{3}-$
d. zinc sulfite -
e. $\mathrm{FeO}-$
e. ammonium sulfate -
f. $\mathrm{ZnCl}_{2}-$
f. manganese(II) hypochlorite -
g. $\mathrm{AgNO}_{3}-$
g. copper (I) nitrite -
h. $\mathrm{NH}_{4} \mathrm{Cl}-$
h. silver cyanide -
i. $\quad \mathrm{CuCl}_{2}-$
i. sodium chloride -
j. $\quad \mathrm{SnCl}_{2}-$
j. lithium fluoride -
k. $\mathrm{PbO}_{2}-$
k. potassium sulfide -

1. $\mathrm{AlCl}_{3}-$
2. aluminum oxide -
m. $\mathrm{PbSO} 4-$
m. nickel (II) chlorite -
n. $\mathrm{Mg}_{3}\left(\mathrm{PO}_{3}\right)_{2}-$
n. lead (II) nitrate
o. $\mathrm{Na}_{2} \mathrm{CO}_{3}-$
o. ammonium sulfate -
p. $\mathrm{NaHCO}_{3}-$
p. aluminum perchlorate -
q. $\mathrm{KCN}-$
q. iron (II) dichromate -
r. $\mathrm{KMnO}_{4}-$
r. lead (IV) bromite -
s. $\mathrm{FeC}_{2} \mathrm{O}_{4}-$
s. lead (II) periodate -
t. $\mathrm{Al}(\mathrm{ClO})_{3}-$
u. $\mathrm{FeS}_{2} \mathrm{O}_{3}-$
t. magnesium thiocyanate -
v. $\mathrm{Sn}\left(\mathrm{CrO}_{4}\right)_{2}-$
u. calcium thiosulfate -
w. $\mathrm{Mg}\left(\mathrm{HSO}_{4}\right)_{2}-$
v. sodium bicarbonate -
w. strontium hydroxide -
3. Name the following covalent compounds:
a. $\mathrm{CO}-$
b. $\mathrm{CO}_{2}-$
c. $\mathrm{H}_{2} \mathrm{O}-$
d. $\mathrm{CCl}_{4}-$
e. $\mathrm{N}_{2} \mathrm{O}_{3}-$
f. $\mathrm{SiO}_{2}-$
g. $\mathrm{N}_{2} \mathrm{O}-$
h. $\mathrm{CBr}_{4}-$
i. $\mathrm{SO}_{2}-$
j. $\quad \mathrm{S}_{2} \mathrm{Cl}_{2}-$
k. $\mathrm{P}_{2} \mathrm{O}_{7}-$
4. Write the molecular formula for the following compounds:
a. xenon hexafluoride -
b. tetranitrogen tetraoxide-
c. boron trifluoride -
d. carbon tetrabromide -
e. dicarbon tetrafluoride -
f. nitrogen tribromide -
g. dinitrogen tetrasulfide -
h. oxygen difluoride -
i. dinitrogen pentoxide -
j. tetraphosphorus decoxide -
k. sulfur hexafluoride -
5. Translate the following word equations to a balanced chemical equations.
a. Iron (II) oxide + aluminum à iron + aluminum oxide
b. Hydrochloric acid + sodium hydroxide à water + sodium chloride
c. Calcium phosphate + sulfuric acid à calcium sulfate + phosphoric acid
d. calcium carbonate \rightarrow calcium + carbon + oxygen gas
e. sodium chloride + silver nitrate \rightarrow sodium nitrate + silver chloride
f. potassium hydroxide _+ sulfuric acid \rightarrow potassium sulfate + water
6. Identify the type of equation for each of the equations you balanced in \#16

MOLES \leftrightarrow GRAMS, MOLARITY, AND STOICHIOMETRY
a. Use the Periodic Table included in this packet for the atomic masses. Do not round the atomic masses.
b. Show cancellation of units and report the final answer with the correct unit and correct number of sig figs.
c. Molarity is a measurement of concentration. $\mathrm{M}=\mathrm{mol} / \mathrm{L}$. If the concentration of a substance is 1.5 M , it means that $1.5 \mathrm{~mol}=1 \mathrm{~L}$.
18. Convert the following to moles :
a. $36.85 \mathrm{~g} \mathrm{C}=$ \qquad
b. $170 \mathrm{~g} \mathrm{O}_{2}=$ \qquad
c. $24.0 \mathrm{~g} \mathrm{Cu}=$ \qquad
d. $165.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=$ \qquad
e. $320.0 \mathrm{~g} \mathrm{CaCO}_{3}=$ \qquad
f. $\quad 50.020 \mathrm{~g} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}=$ \qquad
19. Convert the following to grams:
a. $1.20 \mathrm{~mol} \mathrm{H}_{2}=$ \qquad
b. $0.052 \mathrm{~mol} \mathrm{Ca}=$ \qquad
c. $10.0 \mathrm{~mol} \mathrm{CO}_{2}=$ \qquad
d. $0.00650 \mathrm{~mol} \mathrm{AgNO}_{3}=$ \qquad
e. 1.025 mole $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=$ \qquad
20. Find the concentration for each of the following
a. 25.0 g HCl in 2.1 L solution

$$
\text { Concentration }=\mathrm{M}=\frac{\mathrm{mol}}{\mathrm{~L}}
$$

b. 42.2 g KOH in 250 mL solution
c. $0.065 \mathrm{~kg} \mathrm{Ba}(\mathrm{OH})_{2}$ in 350 mL solution
21. Find the number of moles of solute present in the following solutions:
a. 1.20 L of 0.25 M H 2 SO 4 solution
b. 0.520 L of 1.2 M CuSO 4 solution
c. 650.0 mL of 0.21 M KNO 3 solution
22. Solve the following stoichiometric problems completely.
a. Air bags in cars operate according to the reaction:
$\underset{\sim}{ } \mathrm{Na}_{3} \mathrm{~N}(\mathrm{~s}) \rightarrow$ _ $\mathrm{Na}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g})$
How many grams of nitrogen gas are produced during the decomposition of $3.25 \mathrm{~g} \mathrm{Na}_{3} \mathrm{~N}$?
b. How many grams of lithium are needed to produce 45.0 g of lithium nitride, according to the following process?

$$
\ldots \mathrm{Li}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow \mathrm{Li}_{3} \mathrm{~N}(\mathrm{~s})
$$

c. A 24.5 g sample of sodium chloride reacts with 41.3 g of fluorine gas according to the following chemical equation:

$$
\left.\mathrm{NaCl}_{-} \mathrm{s}\right)+{ }_{-} \mathrm{F}_{2}(\mathrm{~g}) \rightarrow{ }_{-} \mathrm{NaF}(\mathrm{~s})+{ }_{-} \mathrm{Cl}_{2}(\mathrm{~g})
$$

i. Which is the limiting reactant? Justify your answer with calculations.
ii. How many grams of chlorine gas are produced?
iii. How much excess is left over?
d. An 84.1 gram sample of phosphorus reacts with 85.0 g of oxygen according to the following equation:

$$
-\mathrm{P}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow_{-} \mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{~s})
$$

i. Find the limiting reactant. Justify your answer with calculations.
ii. How many grams of $\mathrm{P}_{2} \mathrm{O}_{5}$ are produced in theory? (based on calculation)
iii. A student performed the reaction in the lab and found out that only 123 g of $\mathrm{P}_{2} \mathrm{O}_{5}$ were produced. What then is the percent yield for $\mathrm{P}_{2} \mathrm{O}_{5}$?

GAS LAWS

23. Write down what the following gas laws state and their respective equations.
a. Boyle's Law :

Equation :
b. Charles' Law :

Equation:
c. Gay-Lussac's Law : \qquad
Equation:
d. Combined Gas Law : \qquad
Equation :
e. Avogadro's Law :

Equation :
f. Ideal Gas Law :

Equation :
24. A 100.0 L sample of gas was compressed to 10.0 mL where its pressure is 350.0 torr. What was the original pressure (in torr) of the 100.0 L sample?
25. Butane gas is stored in a tank at a pressure of 10.0 atm at $22.0^{\circ} \mathrm{C}$. The tank can hold a pressure of 50.0 atm before bursting. During a fire the gas is heated to $500.0^{\circ} \mathrm{C}$. What is the gas pressure, and will the tank contain the gas without bursting?
26. Calculate the volume in liters of 38.8 g of CO_{2} at 725 torr and $25.0^{\circ} \mathrm{C}$
27. A gas occupies 450.0 mL at 655 mm Hg pressure and $30.0^{\circ} \mathrm{C}$. What will its volume be at STP?
28. On hot days, you may have noticed that potato chip bags seem to "inflate", even though they have not been opened. If I have a 250.0 mL bag at a temperature of $19.0^{\circ} \mathrm{C}$, and I leave it in my car which has a temperature of $60.0^{\circ} \mathrm{C}$, what will the new volume of the bag be?

General problems

29. How many grams of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (molar mass $=106.0 \mathrm{~g} / \mathrm{mol}$) are required for complete reaction with 25.0 mL of $0.155 \mathrm{M}_{\mathrm{HNO}_{3}}$? (hint: $\mathrm{M}=\mathrm{mol} / \mathrm{L}$; so 0.155 M is equal to $0.155 \mathrm{~mol} \mathrm{HNO}_{3}=1 \mathrm{~L} \mathrm{HNO}_{3}$)
$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{NaNO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
30. At STP, it was found that 1.12 L of a gas had a mass of 2.78 g . What is it's molar mass?
31. A sample of gas occupies 30.0 L at 0.800 atm and 298 K . How many moles of gas are in the sample?
32. What volume of 0.150 M NaOH is needed to react completely with 3.45 g iodine according to the equation: $3 \mathrm{I}_{2}+6 \mathrm{NaOH} \rightarrow 5 \mathrm{NaI}+\mathrm{NaIO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
33. 1.056 g of metal carbonate, containing an unknown metal, M , were heated to give the metal oxide and 0.376 $\mathrm{g} \mathrm{CO}_{2}$.

$$
\mathrm{MCO}_{3}(\mathrm{~s})+\text { heat } \rightarrow \mathrm{MO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

What is the identity of the metal M ? (show all work)
a) Mg
b) Cu
c) Zn
d) Ba
34. The reaction of 25.0 g benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, with excess HNO_{3} resulted in $21.4 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$. What is the percentage yield?

$$
\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{HNO}_{3} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

35. A $100.0-\mathrm{g}$ sample of a compound is made up of 35.9 g of aluminum and 64.1 g of sulfur. The empirical of the compounds is:
36. An organic compound which has the empirical formula CHO has a molar mass of 232. Determine the molecular formula
37.

How many
significant digits are present in the temperature read from the thermometer illustrated to the

38. Convert
a) 23.6 cm to km
b) 356 mg to g
c) 0.00968 nL to hL
d) 0.00023480 ks to cs right?
a) 1
b) 2
c) 3
d) 4
39. A metal sample weighing 30.9232 grams was added to a graduated cylinder containing 23.26 mL of water. The volume of water plus the sample was 24.85 mL . Which setup will result in the density of this metal?
a) $30.9232 \times(24.85-23.26)$
b) $\frac{30.9232}{24.85-23.26}$
c) $\frac{24.85-23.26}{30.9232}$
d) $30.9232 \times \frac{24.85}{23.26}$
e) $\frac{30.9232}{24.85+23.26}$
40. Which of the following is an isotope of the element with 20 protons $(\mathrm{p}=20)$ and 22 neutrons $(\mathrm{n}=22)$?
a) titanium- 22
c) calcium- 40
b) zirconium-40
d) titanium-48
\qquad
Date \qquad

Safety Quiz

Fill in the blank.

1. Pour chemicals from large reagent bottles into \qquad
\qquad before measuring.
2. Read and \qquad a chemical label before using the chemical.
3. When diluting an acid, always add \qquad to \qquad .
4. Work with volatile chemicals under a \qquad .
5. Use a \qquad or \qquad to draw liquid into a pipette.
6. Strike matches \qquad your body.
7. Move test tubes back and forth at an \qquad while heating.
8. Hold hot glassware with \qquad or \qquad
\qquad .
9. When inserting lubricated glass tubing into a stopper, protect your hands with
\qquad
10. Always protect your eyes with \qquad when working in the laboratory.
11. Stand on a \qquad
\qquad if you need to reach.
12. Rinse chemicals from your eyes in an \qquad
\qquad
13. \qquad clothing on the way to the safety shower.
14. Extinguish small fires in containers by \qquad them.
15. Put out clothing fires in a \qquad .

Safety Quiz

True or False

1.	Hold bottles with your hand over the label while pouring.
2.	Immediately wipe up any spills.
3.	When lighting a Bunsen bumer, first turn on the gas, then strike your match.
4.	Check glassware for stars and cracks.
5.	Shake laboratory thermometers down before use.
6.	Caref.lly scoop up mercury from a broken thermometer with a piece of paper.
7.	If you don't have an inserter, lubricate glass tubing before inserting it through a stopper.
8.	Balance a centrifuge by placing testu bes containing equal masses opposite each other.
9.	Wear closed leather shoes to protect your feet.
.	Remove rings and watches before working in the laboratory.

\qquad Block: \qquad Due date: \qquad

Laboratory Glassware

Name of equipment	Picture	Function(Mark an x to all that apply)								$\begin{aligned} & \text { Measurement } \\ & \text { Unit (if } \\ & \text { applicable. i.e. } \\ & \text { mL, g, s) } \end{aligned}$
		Mix	Deliver	Measure	Contain	Deliver	Crush	Heat	Other (Explain)	
Beaker										
Thermometer										
Erlenmeyer flask										
Graduated cylinder										
Bunsen burner										
Test tube										
Balance scale										

Name of equipment	Picture	Function(Mark an x to all that apply)								$\begin{aligned} & \text { Measurement } \\ & \text { Unit (if } \\ & \text { applicable. i.e. } \\ & \mathrm{mL}, \mathrm{~g}, \mathrm{~s}) \\ & \hline \end{aligned}$
		Mix	Deliver	Measure	Contain	Deliver	Crush	Heat	Other (Explain)	
Burette (buret)										
Scoopula										
Plastic pipette										
Graduated pipette										
Volumetric flask										
Watchglass										
Mortar and pestle										
Funnel										

