STANDARD LEVEL (SL) DP CHEM SUMMER ASSIGNMENT

Incoming 12th graders

Summer 2023

- 1. This packet is due on the first day of class.
- 2. Complete all questions on separate sheets of paper or an electronic document. Show all work.
- 3. Remember: Completing this packet will ensure that you are prepared for 12th Grade DP Chemistry and ready to re-take your 11th Grade DP Chemistry Final during the first week of class. This is a large packet so do not wait until the last minute to complete it.
- 1 Tin(II) chloride may be prepared by passing hydrogen chloride gas over heated tin:

 $Sn(s) + 2HCl(g) \rightarrow SnCl_2(s) + H_2(g)$

When 5.00 g of tin is reacted with excess hydrogen chloride, 7.46 g of $SnCl_2$ is obtained. What is the percentage yield of $SnCl_2$?

2 When silver nitrate is reacted with solutions containing chloride ions, insoluble silver chloride is precipitated:

 $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$

- a What mass of silver chloride is precipitated when 20.0 cm³ of 0.100 mol dm⁻³ sodium chloride solution is reacted with excess silver nitrate solution? [3]
- **b** What mass of silver chloride is precipitated when 25.0 cm³ of 0.0600 mol dm⁻³ silver nitrate solution is added to 20.0 cm³ of 0.100 mol dm⁻³ sodium chloride solution? [5]
- **c** What mass of silver chloride is precipitated when 30.0 cm^3 of $0.0800 \text{ mol dm}^{-3}$ silver nitrate solution is added to 20.0 cm^3 of $0.0800 \text{ mol dm}^{-3}$ CaCl₂(aq)? [6]
- d 0.0100 mol of a metal chloride (MCl_x) is dissolved in water then reacted with excess silver nitrate solution. The mass of silver chloride precipitated was 4.30 g.
 Determine the value of x. [2]
- e 1.45 g of a mixture of sodium chloride and potassium chloride is dissolved in water and made up to a total volume of 250.0 cm³. Excess 0.100 mol dm⁻³ silver nitrate solution is added to 25.00 cm³ of this solution. 0.325 g of AgCl is precipitated. Determine the percentage NaCl and KCl in the original mixture. [6]
- 3 In each of the following cases work out the relative atomic mass of the element to **two** decimal places:
 - **a** Rhenium has two naturally occurring isotopes with natural abundances:

¹⁸⁵ Re 37.40%	¹⁸⁷ Re 62.60%]	21

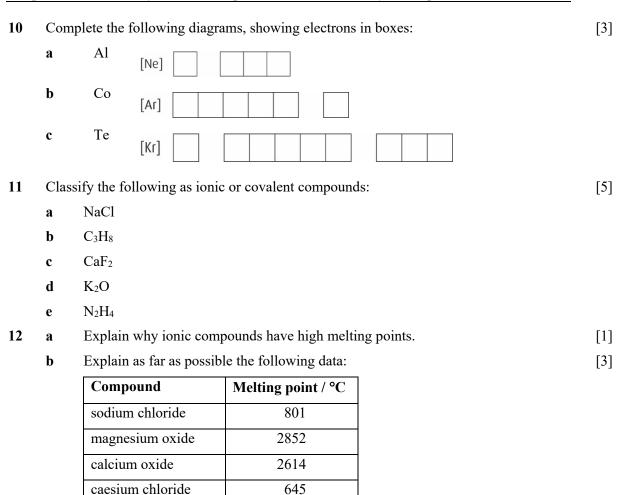
b Neodymium has seven naturally occurring isotopes with abundances:

¹⁴² Nd 27.13%	¹⁴⁶ Nd 17.19%
¹⁴³ Nd 12.18%	¹⁴⁸ Nd 5.76%
¹⁴⁴ Nd 23.80%	¹⁵⁰ Nd 5.64%
¹⁴⁵ Nd 8.30%	

[2]

[3]

- Europium has two naturally occurring isotopes, Eu-151 and Eu-153, and a relative atomic 4 mass of 151.96. Calculate the percentage abundance of each isotope of europium.
- 5 The emission spectrum of hydrogen in the visible region, when observed through a spectroscope, consists of a series of coloured lines on a black background. Explain how the different lines in the spectrum arise. [3]


6	The	diagram on the right represents the energy levels		energy level 5	5
	in a	hydrogen atom. Draw arrows on the diagram to esent the following transitions:	[3]		. 4
	a	a line in the infrared spectrum of a hydrogen atom			
	b	the lowest energy line in the visible spectrum of hydrogen			. 2
	c	a line in the ultraviolet spectrum of a hydrogen	atom.		
					_ 1
				energy level 1	
7		te an equation for the ionisation energy of hydrog vergence limit'.	en and	explain what is meant by the ter	m
8	Writ	e out the full electronic configurations of the foll	owing a	atoms:	[8]
	a	$_{16}\mathbf{S}$			
	b	35Br			
	c	₂₆ Fe			

- d Sn Sr e
- f Xe
- Cu g
- h Cr

9 Write out the full electronic configuration of the following ions: [8]

[2]

- Ca^{2+} a
- b Br⁻
- P³⁻ c
- Sn^{2^+} d
- Ie
- Sc^{3+} f
- Ti^{2+} g
- Cu^{2+} h

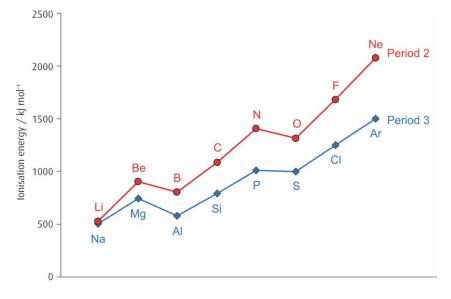
- 13 Draw Lewis structures for the following molecules. Work out the shapes and predict bond angles for the following molecules: [30]
 - a H₂O
 - **b** NH₃
 - c Cl₂O
 - d CO₂
 - e PF₃
 - f BF₃
 - ${\boldsymbol g} \qquad C_2 H_4$
 - $\boldsymbol{h} \qquad N_2H_4$
 - i H₂O₂
 - **j** O₃

14 Draw Lewis structures for the following ions. Predict the shapes and suggest bond angles: [12]

a CO_3^{2-}

- **b** NH_4^+
- c NO₂⁺
- d NO_2^-
- 15 Explain what is meant by electronegativity.
- 16 Select the polar molecules from the following list. For the polar molecules draw diagrams showing the dipoles. [8]

[1]


 $\begin{array}{cccccccc} H_2O & NH_3 & Cl_2O & CF_4 & CO_2 \\ PF_3 & BF_3 & H_2 & N_2 & O_3 \end{array}$

17 The boiling points of the hydrides of group 5 are shown in the table below. Plot this data on a suitable graph and explain the trends shown. [5]

Compound	Boiling point / °C
NH ₃	-33
PH ₃	-88
AsH ₃	-62
SbH ₃	-18

18	a	Explain why diamond has a very high melting point.	[4]
10	a	Explain why diamond has a very high menning point.	[7]

- **b** Explain how the structure of graphite differs from that of diamond. [4]
- **19 a** Explain, using a diagram, the bonding in a metal such as sodium. [2]
 - **b** Explain why magnesium has a higher melting point than sodium. [4]
- 20 The graphs below show the first ionisation energies of the elements in Period 2 and Period 3.Explain the similarities and differences between the graphs. [10]

21	Expl	ain the following:			
	a	Potassium has a lower first ionisation energy than lithium.	[4		
	b	Fluorine is the most electronegative element in the periodic table.	[4		
	c	A chlorine atom is smaller than a sodium atom.	[4		
	d	A chloride ion is larger than a sodium ion.	[2		
22	Arra	nge the following in order of increasing size and explain the order:			
	a	Ar $Cl^ K^+$	[4		
	b	Na^+ Al^{3+} Mg^{2+}	[4		
	c	$I^ Cl$ Cl^-	[3		
23	Com	plete and balance the following equations:	[2		
	a	$Na + H_2O \rightarrow$			
	b	$Cl_2(aq) + KBr(aq) \rightarrow _$			
24	Writ	e equations for the reactions of the following oxides with water:	[4		
	a	sodium oxide			
	b	magnesium oxide			
	c	phosphorus(V) oxide			
	d	sulfur(VI) oxide			
25	hydr	cm ³ of 1.50 mol dm ⁻³ sodium hydroxide is mixed with 100.0 cm ³ of 1.00 mol dm ⁻³ ochloric acid. Both solutions were initially at 19.3 °C and when they were mixed the perature rose to a maximum of 28.3 °C.			
	a	Write an equation for the reaction that occurs.	[1]		
	b	Calculate the number of moles of sodium hydroxide and of hydrochloric acid.	[2]		
	c	Calculate the enthalpy change of neutralisation.			
26	Give	en these enthalpy changes:			
		CH ₃ CH ₂ CH ₂ OH(l) + $^{9}/_{2}O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(l)$ $\Delta H^{\circ} = -2010 \text{ kJ mol}^{-1}$			
		CH ₃ CH ₂ CH ₂ OH(g) + $^{9}/_{2}O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(l)$ $\Delta H^{\circ} = -2055 \text{ kJ mol}^{-1}$			
	calcu	late the enthalpy change for the following process:	[2		
		$CH_3CH_2CH_2OH(g) \rightarrow CH_3CH_2CH_2OH(l)$			
27	Writ	e equations to represent the enthalpy change of formation of the following:	[3		
	a	C ₆ H ₆ (1)			
	b	CH ₃ CHO(l)			
	c	Li ₃ N(s)			

28 Calculate the enthalpy changes for the following reactions given the data in the table.

	$\Delta H_{\rm f}^{\bullet}$ / kJ mol ⁻¹
SO ₂ (g)	-297
PCl ₅ (s)	-444
SOCl ₂ (1)	-246
Cl ₂ O(g)	80
POCl ₃ (1)	-597
NH ₃ (g)	-46
NH ₄ Cl(s)	-314
H ₂ O(g)	-242

a
$$SO_2(g) + PCl_5(s) \rightarrow SOCl_2(l) + POCl_3(l)$$
 [2]

b
$$3Cl_2O(g) + 10NH_3(g) \rightarrow 2N_2(g) + 6NH_4Cl(s) + 3H_2O(g)$$
 [2]

Use the bond energies given in the table to calculate enthalpy changes for reactions below. 29

Bond	Bond enthalpy / kJ mol ⁻¹	Bond	Bond enthalpy / kJ mol ⁻¹	Bond	Bond / kJ
C–C	348	С–Н	412	С–О	
C=C	612	N–H	388	C=O	
C≡C	837	O–H	463	C≡O	
N–N	163	0–0	146	Cl–H	
N=N	409	O=O	496		•
N≡N	944	H–H	436		

Bond	Bond enthalpy / kJ mol ⁻¹
С–О	360
C=O	743
C≡O	1070
Cl–H	431

[5]

[5]

a
$$C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(g)$$
 [5]
b $CO(g) + 3H_2(g) \rightarrow CH_4(g) + H_2O(g)$ [5]

c
$$4NH_3(g) + 3O_2(g) \rightarrow 2N_2(g) + 6H_2O(g)$$

$$4\text{HCl}(g) + \text{O}_2(g) \rightarrow 2\text{H}_2\text{O}(g) + 2\text{Cl}_2(g) \qquad \qquad \Delta H^{\circ} = -112 \text{ kJ mol}^{-1}$$