HIGHER LEVEL (HL) DP CHEM SUMMER ASSIGNMENT

Incoming 12th graders

Summer 2023

- 1. This packet is due on the first day of class during the Fall 2023 semester.
- 2. Complete all questions on separate sheets of paper or an electronic document. Show all work.
- 3. Remember: Completing this packet will ensure that you are prepared for 12th Grade DP Chemistry and ready to re-take your 11th Grade DP Chemistry Final during the first week of class. This is a large packet so do not wait until the last minute to complete it.
- 1 Tin(II) chloride may be prepared by passing hydrogen chloride gas over heated tin:

 $Sn(s) + 2HCl(g) \rightarrow SnCl_2(s) + H_2(g)$

When 5.00 g of tin is reacted with excess hydrogen chloride, 7.46 g of SnCl₂ is obtained. What is the percentage yield of SnCl₂?

2 When silver nitrate is reacted with solutions containing chloride ions, insoluble silver chloride is precipitated:

 $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$

- a What mass of silver chloride is precipitated when 20.0 cm³ of 0.100 mol dm⁻³ sodium chloride solution is reacted with excess silver nitrate solution? [3]
- **b** What mass of silver chloride is precipitated when 25.0 cm³ of 0.0600 mol dm⁻³ silver nitrate solution is added to 20.0 cm³ of 0.100 mol dm⁻³ sodium chloride solution? [5]
- **c** What mass of silver chloride is precipitated when 30.0 cm^3 of $0.0800 \text{ mol dm}^{-3}$ silver nitrate solution is added to 20.0 cm^3 of $0.0800 \text{ mol dm}^{-3}$ CaCl₂(aq)? [6]
- d 0.0100 mol of a metal chloride (MCl_x) is dissolved in water then reacted with excess silver nitrate solution. The mass of silver chloride precipitated was 4.30 g.
 Determine the value of x. [2]
- e 1.45 g of a mixture of sodium chloride and potassium chloride is dissolved in water and made up to a total volume of 250.0 cm³. Excess 0.100 mol dm⁻³ silver nitrate solution is added to 25.00 cm³ of this solution. 0.325 g of AgCl is precipitated. Determine the percentage NaCl and KCl in the original mixture. [6]
- 3 In each of the following cases work out the relative atomic mass of the element to **two** decimal places:
 - **a** Rhenium has two naturally occurring isotopes with natural abundances:

¹⁸⁵ Re 37.40%	¹⁸⁷ Re 62.60%	[2]

b Neodymium has seven naturally occurring isotopes with abundances:

¹⁴² Nd 27.13%	¹⁴⁶ Nd 17.19%
¹⁴³ Nd 12.18%	¹⁴⁸ Nd 5.76%
¹⁴⁴ Nd 23.80%	¹⁵⁰ Nd 5.64%
¹⁴⁵ Nd 8.30%	

[2]

[3]

- 4 Europium has two naturally occurring isotopes, Eu-151 and Eu-153, and a relative atomic mass of 151.96. Calculate the percentage abundance of each isotope of europium.
- 5 The emission spectrum of hydrogen in the visible region, when observed through a spectroscope, consists of a series of coloured lines on a black background. Explain how the different lines in the spectrum arise. [3]

6	The	diagram on the right represents the energy levels		energy level 5	5
	in a	hydrogen atom. Draw arrows on the diagram to resent the following transitions:	[3]		4
	a	a line in the infrared spectrum of a hydrogen atom			0
	b	the lowest energy line in the visible spectrum of hydrogen			2
	c	a line in the ultraviolet spectrum of a hydrogen	atom.		
				energy level 1	1
7		te an equation for the ionisation energy of hydrog nvergence limit'.	gen and	explain what is meant by the	term
8	Wri	te out the full electronic configurations of the foll	owing a	atoms:	[8]
	a	16 S			
	b	35 Br			
	0	Fe			

- **c** ₂₆Fe
- d Sn
- e Sr
- f Xe
- g Cu
- h Cr

9 Write out the full electronic configuration of the following ions:

[8]

[2]

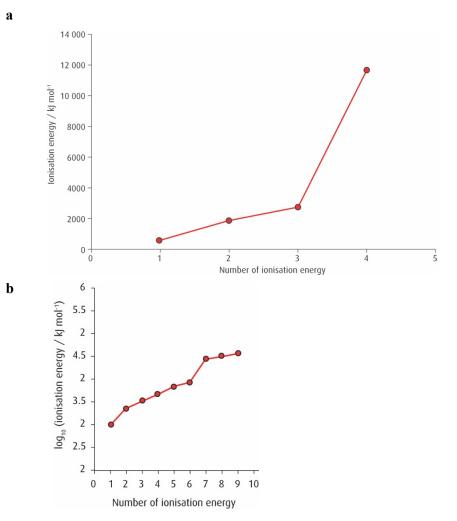
- **a** Ca²⁺
- b Br⁻
- **c** P³⁻
- **d** Sn^{2+}
- **e** I⁻
- f Sc³⁺
- \mathbf{g} Ti²⁺
- **h** Cu^{2+}

 10
 Complete the following diagrams, showing electrons in boxes:

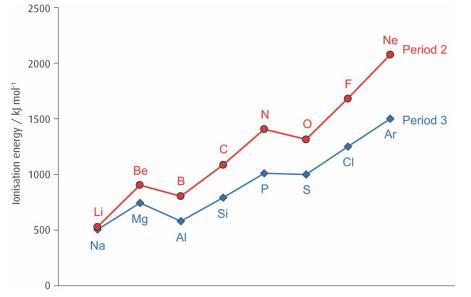
 a
 Al
 [Ne] \blacksquare

 b
 Co
 [Ar] \blacksquare

 c
 Te
 [Kr] \blacksquare


[3]

[3]


[6]

11 Write equations to represent the following processes:

- **a** the first ionisation energy of sodium
- **b** the second ionisation energy of chlorine
- **c** the fifth ionisation energy of lead.
- 12 From the graphs of successive ionisation energy given below, **explain** in which group of the periodic table each element is.

13The graphs below show the first ionisation energies of the elements in Period 2 and Period 3.Explain the similarities and differences between the graphs.[10]

14aExplain why ionic compounds have high melting points.[1]

[3]

b Explain as far as possible the following data:

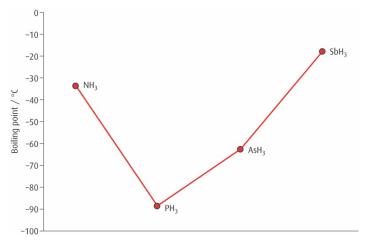
Compound	Melting point / °C
sodium chloride	801
magnesium oxide	2852
calcium oxide	2614
caesium chloride	645

15 Draw Lewis structures for the following molecules. Work out the shapes and predict bond angles: [30]

a H₂O

- **b** NH₃
- c Cl₂O
- d CO₂
- e PF₃
- f BF₃
- **g** C₂H₄
- $h N_2H_4$
- i H₂O₂
- **j** O₃

16 Draw Lewis structures for the following ions. Predict the shapes and suggest bond angles: [12]


a CO₃^{2–}

- **b** NH_4^+
- c NO₂⁺
- d NO_2^-
- 17 Explain what is meant by **electronegativity**.
- 18 Select the polar molecules from the following list. For the polar molecules draw diagrams showing the dipoles. [8]

[1]

 $\begin{array}{ccccccc} H_2O & NH_3 & Cl_2O & CF_4 & CO_2 \\ PF_3 & BF_3 & H_2 & N_2 & O_3 \end{array}$

19 The boiling points of the hydrides of group 5 are plotted in the graph below. **Explain** the trends shown. [5]

20	a	Explain why diamond has a very high melting point.	[4]
	b	Explain how the structure of graphite differs from that of diamond.	[4]

- **21 a** Explain, using a diagram, the bonding in a metal such as sodium. [2]
 - **b** Explain why magnesium has a higher melting point than sodium. [4]
- 22 Draw Lewis structures for the following molecules/ions. Predict the shapes and suggest bond angles:
 - a BrF₃
 - **b** ClO_4^-
 - c ICl₄⁻
 - $\mathbf{d} = \mathrm{BrF_2}^+$
 - e F₃ClO₂
 - f XeF₂
 - g XeO₃

- $h XeO_2F_2$
- i XeO₆^{4–}

23 Suggest the hybridisation at the atom shown in bold in each of the following: [8]

- a H_2S
- **b P**H₃
- **c C**O₂
- $\mathbf{d} = \mathbf{NO}_2^+$
- $e \qquad F_2 CCF_2$
- $\mathbf{f} \qquad H_2\mathbf{N}NH_2$
- $\mathbf{g} \qquad \mathrm{H}_3\mathbf{O}^{\scriptscriptstyle +}$
- h HOOH

24 a Give the formula of the carbonate ion. [1]

- **b** Draw a Lewis structure for the carbonate ion.
- **c** Some C–O bond lengths are given in the following table:

	Bond length / nm
С–О	0.143
C=O	0.122
C≡O	0.113

Explain why all the C–O bond lengths are equal in the carbonate ion and use the information in Table 10 of the Data Booklet to suggest a value for the C–O bond length in the carbonate ion. [3]

[1]

25 Explain the following:

	a	Potassium has a lower first ionisation energy than lithium.	[4]
	b	Fluorine is the most electronegative element in the periodic table.	[4]
	c	A chlorine atom is smaller than a sodium atom.	[4]
	d	A chloride ion is larger than a sodium ion.	[2]
26	Com	plete and balance the following equations:	[2]
	a	$Na + H_2O \rightarrow$	
	b	$Cl_2(aq) + KBr(aq) \rightarrow _$	
27	Write	e equations for the reactions of the following oxides with water:	[4]
	a	sodium oxide	
	b	magnesium oxide	
	c	phosphorus(V) oxide	
	d	sulfur(VI) oxide	

28	a	Exp	lain the term ligand.	[1]
	b ions		rk out the oxidation number of the transition metal in the following complex ounds:	[6]
		i	$[Ni(CN)_4]^{2-}$	
		ii	$[NiF_6]^{2-}$	
		iii	$[\mathrm{CrCl}_4]^-$	
		iv	[Fe(CO) ₅]	
		v	KMnO ₄	
		vi	Na ₂ [FeCl ₄]	
29		[Ni(H is colo	$[2O)_6]^{2+}$ complex ion is green. Explain in terms of electronic structure why thured.	is complex [5]
30	hydi	rochloi	of 1.50 mol dm ⁻³ sodium hydroxide is mixed with 100.0 cm ³ of 1.00 mol dm ⁻¹ ric acid. Both solutions were initially at 19.3 °C and when they were mixed the rose to a maximum of 28.3 °C.	
	a	Wri	te an equation for the reaction that occurs.	[1]
	b	Calc	culate the number of moles of sodium hydroxide and of hydrochloric acid.	[2]
	c	Calc	culate the enthalpy change of neutralisation.	[3]
31	Giv	en thes	se enthalpy changes:	
		CH ₃	$_{3}CH_{2}CH_{2}OH(l) + \frac{9}{2}O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(l)$ $\Delta H^{\circ} = -2010 \text{ kJ mo}$	l^{-1}
		CU	CU CU OU(a) $+\frac{9}{0}$ (c) $+200$ (c) $+4110(1)$ $AU^{2} = -2055$ h m	1-1

$CH_3CH_2CH_2OH(g) + \frac{9}{2}O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l)$	$\Delta H^{\circ} = -2055 \text{ kJ mol}^{-1}$	
ulate the enthalpy change for the following process:		[2]

calculate the enthalpy change for the following process:

 $CH_3CH_2CH_2OH(g) \rightarrow CH_3CH_2CH_2OH(l)$

Use the bond energies given in the table to calculate enthalpy changes for reactions below. 32

Bond	Bond enthalpy / kJ mol ⁻¹	Bond	Bond enthalpy / kJ mol ⁻¹	Bond	B /]
C–C	348	С–Н	412	С–О	
C=C	612	N–H	388	C=O	
C≡C	837	O–H	463	C≡O	
N–N	163	0–0	146	Cl–H	
N=N	409	O=O	496		
N≡N	944	H–H	436		

Bond	Bond enthalpy / kJ mol ⁻¹
С–О	360
C=O	743
C≡O	1070
Cl–H	431

[5]

[5]

[5]

 $\mathrm{C_2H_4(g)} + \mathrm{3O_2(g)} \rightarrow \mathrm{2CO_2(g)} + \mathrm{2H_2O(g)}$ a

 $CO(g) + 3H_2(g) \rightarrow CH_4(g) + H_2O(g)$ b

 $4NH_3(g) + 3O_2(g) \rightarrow 2N_2(g) + 6H_2O(g)$ с

33 Use the data given below and the bond energies in question 8 to calculate the Cl-Cl bond energy. [5] $4HCl(g) + O_2(g) \rightarrow 2H_2O(g) + 2Cl_2(g)$ $\Delta H^{\circ} = -112 \text{ kJ mol}^{-1}$

[3]

[6]

- **34** Write equations to represent the enthalpy change of formation of the following:
 - **a** C₆H₆(1)
 - **b** CH₃CHO(l)
 - c $Li_3N(s)$
- 35 Calculate the enthalpy changes for the following reactions given the data in the table.

	$\Delta H_{\rm f}^{\bullet}$ / kJ mol ⁻¹
SO ₂ (g)	-297
PCl ₅ (s)	-444
SOCl ₂ (l)	-246
Cl ₂ O(g)	80
POCl ₃ (l)	-597
NH ₃ (g)	-46
NH ₄ Cl(s)	-314
$H_2O(g)$	-242

a
$$SO_2(g) + PCl_5(s) \rightarrow SOCl_2(l) + POCl_3(l)$$
 [2]

b
$$3Cl_2O(g) + 10NH_3(g) \rightarrow 2N_2(g) + 6NH_4Cl(s) + 3H_2O(g)$$
 [2]

36 Construct a Born–Haber cycle showing the formation of calcium fluoride and use it and the data in the table below to predict the lattice enthalpy of calcium fluoride. [6]

$\Delta H_{\rm at}({\rm Ca}({\rm s}))$	193 kJ mol ⁻¹
$\Delta H_{\rm at}({\rm F}_2({\rm g}))$	79 kJ mol^{-1}
first ionisation energy (Ca)	590 kJ mol ^{-1}
second ionisation energy (Ca)	1150 kJ mol ⁻¹
first electron affinity (F)	-348 kJ mol^{-1}
$\Delta H_{\rm f}({\rm CaF_2}({\rm s}))$	-1214 kJ mol ⁻¹

37 State and explain the trends in lattice enthalpy shown in the table below.

Substance	Lattice enthalpy / kJ mol ⁻¹
LiF	1022
NaF	902
KF	801
MgO	3889
CaO	3513
SrO	3310

38 Predict, with a reason, whether each of the following reactions involves an increase or decrease in entropy.

a
$$3Cl_2O(g) + 10NH_3(g) \rightarrow 2N_2(g) + 6NH_4Cl(s) + 3H_2O(g)$$
 [2]

b
$$\operatorname{NCl}_3(l) + 2\operatorname{NO}(g) \to \operatorname{ClNO}(g) + \operatorname{N}_2\operatorname{O}(g) + \operatorname{Cl}_2(g)$$
 [2]

39 Use the data in the table to calculate the entropy change for the following reactions:

	<i>S</i> ^e / J K ⁻¹ mol ⁻¹
SO ₂ (g)	248
PCl ₅ (s)	167
SOCl ₂ (1)	308
N ₂ H ₄ (1)	121
POCl ₃ (l)	223
O ₂ (g)	205
N ₂ (g)	192
$H_2O(g)$	188

a
$$SO_2(g) + PCl_5(s) \rightarrow SOCl_2(l) + POCl_3(l)$$
 [2]

b
$$N_2H_4(l) + O_2(g) \rightarrow N_2(g) + 2H_2O(g)$$
 [2]

c Use your answer from question 35 and part (a) to predict whether the reaction: $SO_2(g) + PCl_5(s) \rightarrow SOCl_2(l) + POCl_3(l)$ is spontaneous at 298 K. [4]

[2]

40 a Use the values given in the table to calculate ΔG° for the reaction:

$$Cl_2(g) + 2NO(g) \rightarrow 2ClNO(g)$$

	$\Delta G_{ m f}^{ m e}$ / kJ mol ⁻¹
ClNO(g)	66
NO(g)	87

b Predict whether this reaction will be more spontaneous at 300 K or 500 K. [3]